Journal of Organometallic Chemistry, 213 (1981) C46-C48
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

SOME NEW RHODIUM(I)-IRIDIUM(III) COMPLEXES WITH BRIDGING HYDRIDE AND CHLORIDE LIGANDS

HANS LEHNER, ALFREDO MUSCO, LUIGI M. VENANZI, Laboratorium für Anorganische Chemie, ETH-Zentrum, CH-8092 Zurich (Switzerland) and ALBERTO ALBINATI
Istituto di Chimica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)
(Received April 10th, 1981)

Summary

$\left[\operatorname{IrH}_{5}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ reacts with $\left[\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Rh}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{PR}_{3}=\mathrm{PEt}_{3}\right.$ or $2 \mathrm{PR}_{3}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) to give the hydrido-bridged binuclear species $\left[\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Rh}\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{Cl}\right) \mathrm{IrH}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ which show catalytic activity in alkene hydrogenation.

Binuclear complexes containing bridging hydrides together with halide ligands have not been extensively studied $[1-3]$ although some compounds of this type, i.e., $\left[\mathrm{M}_{2} \mathrm{H}_{n} \mathrm{X}_{3-n}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]^{+}(\mathrm{M}=\mathrm{Rh}$ and $\mathrm{Ir} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and $\mathrm{I} ; n=1$ and 2), I, are active catalysts for alkene hydrogenation [2].

During the course of a study of binuclear complexes with bridging hydride ligands it was observed that mononuclear dihydrido complexes formed more stable hydrido-bridged binuclear species with the $\left\{\text { cis- } \mathrm{Rh}\left(\mathrm{PR}_{3}\right)_{2}\right\}^{+}$moiety than with the $\left\{\text { trans }-\mathrm{PtPh}\left(\mathrm{PR}_{3}\right)_{2}\right\}^{+}$fragment [4]. As Van Dongen et al. [1] report the formation of unstable species of the type $\left[\left(\mathrm{PR}_{3}\right) \mathrm{ClM}\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{Cl}\right) \mathrm{IrH}_{2}-\right.$ $\left.\left(\mathrm{PR}_{3}\right)_{2}\right](\mathrm{M}=\mathrm{Pt}$ and Pd$)$, II, from $\left[\left(\mathrm{PR}_{3}\right)_{2} \mathrm{ClM}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{MCl}\left(\mathrm{PR}_{3}\right)\right]$, III, and $\left[\mathrm{IrH}_{5}\left(\mathrm{PR}_{3}\right)_{2}\right]$, IV, we studied the reaction of this pentahydride with $\left[\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Rh}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Rh}\left(\mathrm{PR}_{3}\right)_{2}\right], \mathrm{V}$, or its precursor $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)_{2}\right]$, VI, [5], to prepare stable rhodium-iridium species containing both hydride and chloride bridging ligands which might show catalytic activity.

Compounds of the types V or VI $\left(\mathrm{PR}_{3}=\mathrm{PEt}_{3}\right.$, Va or VIa; $2 \mathrm{PR}_{3} \equiv$ $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2} \equiv$ diphos, Vb or VIb), in toluene, react with the iridium pentahydride [$\mathrm{IrH}_{5}\left(\mathrm{PEt}_{3}\right)_{2}$], IVa, giving orange-brown complexes of the type $\left[\left(\mathrm{PR}_{3}\right)_{2} \operatorname{Rh}\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{Cl}\right) \operatorname{IrH}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$, VII.

The molecular geometry of complex VIIa was established by X-ray diffrac-

(VIIa, $\mathrm{PR}_{3}=\mathrm{PEt}_{3}$;
VII b, $2 \mathrm{PR}_{3}=$ diphos)

Fig. 1. Molectar structure of $\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Rh}\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{CI}\right) \mathrm{IrH}_{2}\left(\mathrm{PE}_{3}\right)_{2}\right]_{2}$ VIIa. Bond lengths (A$): \mathrm{Rh}-\mathrm{Ir}$ 2.899(1): Ir-Cl 2.494(3); Rh-Cl 2.427(3); Ir-P(1) 2.263(4); Ir-P(2) 2.272(4); Rh-P(3) 2.199(3); Rh-R(4) 2.245(3); ($\mathrm{P}-\mathrm{C}$) av. value 1.85(2). Bond angles (${ }^{\circ}$) Ir-Cl-Rh 72.2(1); Rh-Ir-P(1) 91.7(1); Fh-Ir-P(2) 101. 8(1); P(1)-Ir-P(2) 166.4(2); Ir-Hh-P(3) 117.0(1):IE-Rh-P(4) 145.1(1); $P(3)-T h-P(4) 97.9(1)$. Torsion angles ($\left.{ }^{\circ}, ~ a v, ~ e r r o r-0.5\right) P(1)-[r-R h-P(4) 96.4 ; P(2)-T r-R h-P(4)$ -85.3 ; $\mathrm{Cl}-\mathrm{Ir}-\mathrm{Rh}-\mathrm{P}(3) 178.9 \div \mathrm{Cl}-\mathrm{Ir}-\mathrm{Rh}-\mathrm{P}(4)$ 1.0. Average displacement of Cl and Ir from LSQ plane defined by Rh, $P(3)$ and $P(4)<0.04$ A.
tion [6] and the main features of the structure are shown in Fig. 1. The hydride ligands were not located. From the positions of the heavy atoms one can postulate a distorted square planar coordination around rhodium and a distorted octahedral coordination around iridium. The bridging $\operatorname{Rh}\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{Cl}\right)$ Ir region is strongly asymmetric as shown by the different metal-chlorine bond distances (see Fig. 1) and the long $\mathrm{Ir}-\mathrm{Cl}$ bond can be accounted for by the trans influence of H [2]. Noteworthy are also the $R h-P(3)$ and $R h P(4)$ bond distances, the latter being considerably longer than the former, presumably because of the presence of a hydride ligand in the trans position.

The presence of the hydride ligands in compounds VIIa and VIIb is indicated by their ${ }^{1} \mathrm{H}$ NMR spectra. Thus, compound VIIb shows three sets of signals centered at $-12.2,-12.7$ and -24.2 ppm (toluene- $d_{8}, 250 \mathrm{MHz}$), of relative intensities $1: 1: 1$, assigned to $\mathrm{H}(1), \mathrm{H}(3)$ and $\mathrm{H}(2)$ respectively [7].

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound VIIb (toluene- $d_{8}, 101.27 \mathrm{MHz}$) shows three sets of signals: (1) a doublet of doublets, $\delta=80.0 \mathrm{ppm}$, assigned to $\mathrm{P}(3)$; a set of four triplets; $\delta=58.8 \mathrm{ppm}$, assigned to $\mathrm{P}(4)$; and a doublet $\delta=4.2 \mathrm{ppm}$, assigned to $\mathrm{P}(1)$ and $\mathrm{P}(2)$ [8].

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of compound VIIa are analogous to those of compound VIIb.

The infrared spectrum of compound VIIb shows medium intensity bands at 2060 and $2210 \mathrm{~cm}^{-1}$ assignable to the stretching vibrations of the terminal hydride ligands, $\mathrm{H}(2)$ and $\mathrm{H}(3)$. The absorption due to the bridging hydride ligand, $H(1)$, in this type of complex is expected to occur below $1300 \mathrm{~cm}^{-1}$ [9].

Preliminary tests show that compound VIIb catalyses the hydrogenation of 1-hexene at room temperature and $5 \mathrm{~atm} . \mathrm{H}_{2}$. Thus, in this respect, compounds of type VII behave similarly to those of type I.

References

[^0]
[^0]: 1 J.P.C.M. van Dongen, C. Masters and J.P. Visser, J. Organometal. Chem., 94 (1975) C29.
 2 P.M. Maitlis, Accounts Chem. Res., 11 (1978) 301.
 3 M.R. Churchill, Adv. Chem. Ser., Transition Metal Hydrides, 167 (1978) 36.
 4 P.S. Pregosin, A. Togni and L.M. Venanzi, Angew. Chem., in press.
 5 P. Albano, M. Aresta and M. Manassero, Inorg. Chem., 19 (1980) 1069.
 6 Compound VIIb is monoclinic; space group P2 $/ c ; a=11.507(7) ; b=15.974(6) ; c=19.198(7)$ A ; $\beta=103.2(4)^{\circ}$ (least squares refined values): $Z=4.4846$ independent reflections were collected using an automated Philips PW 1100 four-circle diffractometer using Mo- K_{α} graphite-monochromated radiation up to $2 \theta \leqslant 45^{\circ} .4277$ observed reflections (having $I_{\text {net }} \geqslant 3 \sigma(I)$) were used in the structure determination. The structure was solved by Patterson and Fourier methods and refined by block diagonal least squares to the present agreement index of $\mathbf{6 . 0 \%}$ using anisotropic temperature factors for $\mathrm{Ir}, \mathrm{Rh}, \mathrm{Cl}$ and P atoms, isotropic for the others.
 7 The assignment of the signals due to $\mathrm{H}(1)$ is based on the magnitude of ${ }^{2} J(\mathrm{P}(4), \mathrm{H})$ [J.P. Jesson, Stereochemistry and Stereochemical Nonrigidity in Transition Metal Hydrides in E.L. Muetterties (Ed.), Transition Metal Hydrides, M. Dekker, New York, 1971, p. 75] and the assignment of the signals due to $\mathrm{H}(2)$ and $\mathrm{H}(3)$ is based on the empirical observation [A. Immirizu, A. Musco, P.S. Pregosin and M. Venanzi, Angew. Chem., 92 (1980) 744; idem, Angew. Chem. Int. Ed. Engl., 19 (1980) 721] that in related binuclear hydrido-bridged complexes ${ }^{2} J(H, H-c i s)>^{2} J(H, H$-trans $){ }^{2} J(H(1), P(4))=61.2 \mathrm{~Hz}$; ${ }^{2} J(H(1), H(3))=2.4 \mathrm{~Hz} ;{ }^{2} J(H(2), H(3))=9.5 \mathrm{~Hz} ;{ }^{2} J(H(3), \mathrm{P}(1)$ and $\mathrm{P}(2))=16.3 \mathrm{~Hz}$.
 8 The assignment of the low-field signals to $P(3)$ and $P(4)$ was made on the basis of an off-resonance spectrum which showed only a broadening of the lines centered at 58.8 ppm and the assumption that ${ }^{2} J(\mathrm{P}, \mathrm{H}$-trans $)>{ }^{2} J(\mathrm{P}, \mathrm{H}-$ cis $) .{ }^{1} J(\mathrm{Rh}, \mathrm{P}(3))=202.5 \mathrm{~Hz} ;{ }^{1} J(\mathrm{Rh}, \mathrm{P}(4))=172.8 \mathrm{~Hz} ;{ }^{2} J(\mathrm{P}(3), \mathrm{P}(4))=35.3 \mathrm{~Hz} ;$ ${ }^{4} J(P(4), P(1)$ and $P(2))=3.3 \mathrm{~Hz}$.
 9 C. White, A.J. Oliver and P.M. Maitlis, J. Chem. Soc. Dalton, (1973) 1901.

